논문 (학술지)
Unsupervised inter-domain transformation for virtually stained high-resolution mid-infrared photoacoustic microscopy using explainable deep learning
등록번호 | NART133079622 | SCI 구분
?
※구분 : SCI(SCIE포함), 비SCI |
SCI |
---|---|---|---|
저자명 (주·공동저자) | -; | ||
논문구분 | 국외전문학술지 | 학술지명 | Nature communications |
ISSN | 2041-1723 | 학술지 출판일자 | 2024-12-30 |
학술지 볼륨번호 | 15(1) | 논문페이지 | 10892 ~ 10892 |
학술지 임팩트팩터 | 14.7 | 기여율 | 9 % |
DOI | 10.1038/s41467-024-55262-2 | ||
초록 | Mid-infrared photoacoustic microscopy can capture biochemical information without staining. However, the long mid-infrared optical wavelengths make the spatial resolution of photoacoustic microscopy significantly poorer than that of conventional confocal fluorescence microscopy. Here, we demonstrate an explainable deep learning-based unsupervised inter-domain transformation of low-resolution unlabeled mid-infrared photoacoustic microscopy images into confocal-like virtually fluorescence-stained high-resolution images. The explainable deep learning-based framework is proposed for this transformation, wherein an unsupervised generative adversarial network is primarily employed and then a saliency constraint is added for better explainability. We validate the performance of explainable deep learning-based mid-infrared photoacoustic microscopy by identifying cell nuclei and filamentous actins in cultured human cardiac fibroblasts and matching them with the corresponding CFM images. The XDL ensures similar saliency between the two domains, making the transformation process more stable and more reliable than existing networks. Our XDL-MIR-PAM enables label-free high-resolution duplexed cellular imaging, which can significantly benefit many research avenues in cell biology. |
연구개발성과 등록 또는 활용에 대한 문의는 논문 연구개발성과 담당자를 통해 문의하시기 바랍니다.
[문의] 한국과학기술정보연구원 Tel : 042)716-7066, https://curation.kisti.re.kr/
- NTIS 관련 이용문의는 NTIS 콜센터(042-869-1115)로 문의하시기 바랍니다.
NTIS의 논문 정보는 국가연구개발사업 수행을 통해 발생된 성과로, 조사분석 등을 통해 입력된 정보를 수집 및 제공하고 있어, 출판사 또는 논문 정보 제공 사이트(Scienceon, RISS 등)에서 일괄 제공하는 논문 정보와 차이가 있을 수 있습니다.