논문 (학술지)
Seasonal prediction of high-resolution temperature at 2-m height over Mongolia during boreal winter using both coupled general circulation model and artificial neural network
등록번호 | RPMS-2019-0190728468 | SCI 구분
?
※구분 : SCI(SCIE포함), 비SCI |
SCI |
---|---|---|---|
저자명 (주·공동저자) | Bayasgalan Gerelchuluun; Bae | ||
논문구분 | 국외전문학술지 | 학술지명 | INTERNATIONAL JOURNAL OF CLIMATOLOGY |
ISSN | 0899-8418 | 학술지 출판일자 | - |
학술지 볼륨번호 | 38 | 논문페이지 | 5418 ~ 5429 |
학술지 임팩트팩터 | 3.76 | 기여율 | 50 % |
DOI | 10.1002/joc.5848 | ||
초록 | The hindcast data of Pusan National University coupled general circulation model (PNU CGCM), a participant model of the Asia-Pacific Economic Cooperation Cli- mate Center (APCC) Multi-Model Ensemble Climate Prediction System, and August–October sea-surface temperature (SST) in the northern Barents–Kara Sea(BKI) and the sea-ice extent (SIE) in the Chukchi Sea (East Siberian Sea index [ESI]) are used for predicting 20 × 20-km-resolution anomalous surface air temperature at 2-m height (aT2m) over Mongolia for boreal winter. For this purpose, area-averaged surface air temperature (TI) and sea-level pressure (SLP) over Mon-golia are defined. Then four large-scale indices, TI mdl and SHI mdl obtained from PNU CGCM, and TI MLR and SHI MLR obtained from multiple linear regressions on BKI and ESI, are incorporated using the artificial neural network (ANN) method for the prediction and statistical downscaling to obtain the monthly and seasonal 20 × 20-km-resolution aT2m over Mongolia in winter. An additional statistical method, which uses BKI and ESI as predictors of TI and SHI together with dynamic prediction by the CGCM, is used because of the relatively low skill of seasonal predictions by most of the state-of-the-art models and the multi-model ensemble systems over high-latitude landlocked Eurasian regions such as Mongolia. The results show that the predictabilities of monthly and seasonal 20 × 20-km-resolution aT2m over Mongolia in winter are improved by applying ANN to both statistical and dynamical predictions compared to utilizing only dynamic prediction. The predictability gained by the proposed method is also demonstrated by the probabilistic forecast implying that the method forecasts aT2m over Mongolia in winter reasonably well. |
연구개발성과 등록 또는 활용에 대한 문의는 논문 연구개발성과 담당자를 통해 문의하시기 바랍니다.
[문의] 한국과학기술정보연구원 Tel : 042)716-7066, https://curation.kisti.re.kr/
- NTIS 관련 이용문의는 NTIS 콜센터(042-869-1115)로 문의하시기 바랍니다.
NTIS의 논문 정보는 국가연구개발사업 수행을 통해 발생된 성과로, 조사분석 등을 통해 입력된 정보를 수집 및 제공하고 있어, 출판사 또는 논문 정보 제공 사이트(Scienceon, RISS 등)에서 일괄 제공하는 논문 정보와 차이가 있을 수 있습니다.