국가과학기술지식정보서비스

국가연구개발성과

성과
논문 (학술지) Intelligent Feature Selection for ECG-Based Personal Authentication Using Deep Reinforcement Learning
저자, 논문 구분, 저자, 학술지명, ISSN, SCI(SCIE포함) 구분, 학술지 출판 일자, 볼륨, 페이지, 학술지 임팩트 팩터, 학술대회명, 학술대회 개최국, 키워드 항목으로 구성된 논문 상세조회를 제공하고 데이터가 없는 항목에 대해서는 출력
등록번호 -
SCI 구분
 ※구분 : SCI(SCIE포함), 비SCI
SCI
저자명 (주·공동저자) -;
논문구분 국외전문학술지 학술지명 Sensors 2023
ISSN 1424-8220 학술지 출판일자 2023-01-20
학술지 볼륨번호 23(3) 논문페이지 1230 ~ 1230
학술지 임팩트팩터 3.576 기여율 50 %
DOI https://doi.org/
초록
In this study, the optimal features of electrocardiogram (ECG) signals were investigated for the implementation of a personal authentication system using a reinforcement learning (RL) algorithm. ECG signals were recorded from 11 subjects for 6 days. Consecutive 5-day datasets (from the 1st to the 5th day) were trained, and the 6th dataset was tested. To search for the optimal features of ECG for the authentication problem, RL was utilized as an optimizer, and its internal model was designed based on deep learning structures. In addition, the deep learning architecture in RL was automatically constructed based on an optimization approach called Bayesian optimization hyperband. The experimental results demonstrate that the feature selection process is essential to improve the authentication performance with fewer features to implement an efficient system in terms of computation power and energy consumption for a wearable device intended to be used as an authentication system. Support vector machines in conjunction with the optimized RL algorithm yielded accuracy outcomes using fewer features that were approximately 5%, 3.6%, and 2.6% higher than those associated with information gain (IG), ReliefF, and pure reinforcement learning structures, respectively. Additionally, the optimized RL yielded mostly lower equal error rate (EER) values than the other feature selection algorithms, with fewer selected features.
☞ 성과발생연도 2021년 이후 논문은 조사분석 미확정 정보이며, 조사분석 확정시 기여율 등 일부 정보가 변경될 수 있습니다.
※ 연구개발성과 등록 또는 활용에 대한 문의는 논문 연구개발성과 담당자를 통해 문의하시기 바랍니다.
    [문의] 한국과학기술정보연구원 Tel : 042)716-7066, https://curation.kisti.re.kr/
※ NTIS 관련 이용문의는 NTIS 콜센터(042-869-1115)로 문의하시기 바랍니다.